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Abstract—This research tackles the challenges in person
re-identification (ReID) by proposing a cross-modal inference
pipeline that integrates visual and inertial measurement unit
(IMU) sensor data. Traditional ReID methods relying solely
on visual features face limitations in diverse environmental
conditions. The introduced approach demonstrates increased
resilience to variations in appearance by fusing data from
multiple modalities. The study focuses on person-mobile device
ReID, mapping individuals in video streams to IMU data from
mobile devices. Rigorous testing on different variations of Long-
Short Term Memory (LSTM) network achieves up to 100%
matching accuracy, emphasizing the method’s effectiveness. The
proposed pipeline holds promise for real-world applications,
particularly in assistive technologies, showcasing the potential
of cross-modal inference for enhanced accuracy and efficiency.
The poster complementing this paper can be found in this link
https://tinyurl.com/mt5ekxsc and a recording of the presentation
can be found here https://tinyurl.com/ynuw24ys.

Index Terms—Person re-identification, cross modal inference,
multimodal learning, inertial measurement unit (IMU), assistive
technologies.

I. INTRODUCTION

Person re-identification (ReID) poses a fundamental chal-
lenge within computer vision, striving to match images of the
same individual across diverse cameras or temporal instances
amidst fluctuating conditions. Traditional ReID techniques,
reliant on visual features, prove susceptible to variations in
appearance, lighting, pose, or occlusions [1]. A potential rem-
edy involves harnessing cross-modal translation to overcome
these constraints by integrating supplementary insights from
alternative modalities. Among these, cross-modal inference
utilizing inertial measurement unit (IMU) sensors emerges as
a solution capable of augmenting the precision and efficiency
of ReID systems. IMU sensors excel in capturing distinctive
motion features specific to each person, exhibiting greater
resilience to changes in appearance and environmental condi-
tions. Moreover, the widespread availability of IMU sensors in
mobile devices renders them a pragmatic and promising choice
for real-world ReID applications. Notably, cross-modal person
ReID holds substantial implications for practical scenarios,
such as identity verification in access control systems [2] and
providing real-time guidance for the visually impaired in smart
streetscapes [3].

In juxtaposition to their susceptibility to challenging envi-
ronmental factors and sensitivity to variations in appearance,
lighting, pose, and occlusions, conventional approaches to
ReID frequently revolve around acquiring modality-specific or

modality-shareable features. This results in an array of inherent
limitations. Firstly, modality-specific features lack generaliz-
ability across different modalities. Secondly, the learning of
modality-shareable features often entail complex processes
such as adversarial training or knowledge distillation, demand-
ing substantial datasets. Compounding these challenges is the
predominant reliance of existing ReID methods on image and
video data, neglecting the temporal information inherent in
data sequences from other modalities. The approach presented
in this study aims to overcome the shortcomings of current
methodologies by employing a cross-modal inference pipeline
to integrate visual and IMU sensor data for person ReID.
The proposed pipeline matches people by comparing predicted
IMU readings from visual inputs to readily available IMU data.
The introduced approach paves the way for novel applications
of person ReID in fields like assistive technologies, particu-
larly leveraging the ubiquity of IMU sensor data.

This paper is organized as follows. Section II discusses
contemporary studies related to this line of work. Section
III sets up the high level objective and approach to person
ReID addressed in this work, outlining the overall pipeline.
Section III delves deeper into the methods employed for
the proposed pipeline. This section elucidates on the dataset,
selected features, multimodal data patterns, and overall system
description. Section IV highlights the experiments conducted
to evaluate the pipeline. Section V goes over the results of
the experiments and pipeline performance, while Section VI
delineates the limitations and future work of the pipeline
before drawing final conclusions in Section VII.

II. OBJECTIVES

This paper explores person-mobile device ReID through
cross-modal inference, employing both visual and IMU sensor
data sourced from mobile devices. The primary objective is to
devise an innovative methodology that establishes a connection
between IMU data and individuals in videos. The aim is to
infer an individual’s acceleration from video data and synchro-
nize it with data derived from their mobile phones, thereby
tackling the challenges inherent in cross-modal recognition
and tracking.

We focus on designing a pipeline to map individuals within
a video stream with their IMU data readily available from
mobile devices. Through the fusion of data from diverse
modalities, this proposed approach demonstrates increased re-
silience to variations in appearance and other factors that might
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otherwise impair the effectiveness of ReID methods solely
relying on visual information. We rigorously test our pipeline
as we add more complexities to it from a naive foundation.
Our proposed method achieves up to 100% matching accuracy
on a simple Sequence-to-Sequence Long-Short Term Memory
network, with and without an attention mechanism, trained by
leave-one-out method with a semi-supervised contrastive loss
auxiliary function.

III. RELATED WORK

The contemporary object detection task in computer vision
is primarily approached through two methods: Convolutional
Neural Network (CNN) and Transformers. CNN-based models
like YOLO, Faster R-CNN, and RetinaNet are commonly
employed in real-world object detection due to their efficiency
and accuracy [4]–[6]. Transformer-based detectors such as
DETR, ViT, and Swin Transformers have gained popularity
in research for their potential to outperform traditional CNN-
based models in specific tasks [7]–[9]. While CNN-based
models are generally faster and more efficient, making them
suitable for real-time applications, transformer-based models
are computationally heavier but offer advantages in capturing
global context in complex scenes. This paper employs a hybrid
approach, combining both a CNN model and the LSTM
architecture to enhance understanding of complex spatial and
temporal relationships in the given task.

Recent research in the object detection application field has
focused on ReID in multi-camera systems to enhance tracking
and identification accuracy in urban environments. Studies
such as Lu et al. [10], Li et al. [11], and Ye et al. [12] pro-
pose strategies for ReID across different imaging modalities,
effectively transferring and integrating features from both RGB
and infrared modalities. Additionally, works by Jeon et al. [13]
and Specker et al. [14] introduce trajectory prediction-based
approaches for multi-camera tracking, addressing challenges
like object occlusions and appearance variation in different
camera views. These advancements significantly improve the
performance of ReID techniques, offering practical benefits
in urban surveillance and smart city infrastructure, where
efficient and accurate tracking and identification are essential
[10]–[14].

In the field of ReID, utilizing 3D bounding box information
offers more comprehensive details compared to traditional 2D
bounding boxes, capturing intricate relationships in data. Re-
cent works by Mahdi et al. [15] and Yan et al. [16] implement
robust 3D object recognition systems in complex environ-
ments. This approach not only enhances object recognition
accuracy in real-world scenarios but also provides detailed
spatial data, including positions, velocities, and trajectories.
Such spatial information is crucial in ReID applications, facil-
itating a better understanding of object relationships within a
scene and significantly improving tracking and identification
accuracy, especially in densely populated or highly dynamic
environments [15], [16].

Numerous studies [17]–[19] in human gait research have
advanced human identification and activity recognition using

sophisticated machine learning techniques. In [18], [19], hy-
brid neural networks are demonstrated to effectively capture
both spatial and temporal aspects of human gaits. These
findings underscore the significance of comprehending the gait
cycle and its practical applications in real-world scenarios. Our
research focuses on collecting IMU data from diverse gait
patterns to assist the model in analyzing individual motion
patterns. This approach not only improves the model’s analyt-
ical capabilities but also significantly enhances its robustness
[17]–[19].

Cross-modal learning is pivotal in machine learning, inte-
grating information from diverse sensory inputs for improved
performance. Research by Zhang et al. [20] highlights the
effectiveness of using transformers for semantic segmentation
in multi-modal scenarios. In ReID, studies integrate features
from modalities like RGB and infrared images, enhancing
performance in challenging conditions. Models such as ViLT,
ALIGN, and CLIP integrate textual and visual data for tasks
like image captioning. In our research, we uniquely apply
cross-modality learning by aligning inference data from vision
modality with IMU data, crucial for recognition and tracking
tasks.

IV. METHODS

A. Dataset

A custom dataset has been used for training and evaluating
the proposed pipeline. The complete dataset comprises of
visual and IMU data for four (4) distinct individuals, collected
simultaneously i.e. in the same video stream. The following
sub-sections detail the specifics of the data collection proce-
dure.

1) Equipments:
a) Cameras:

• RTSP Camera: The camera is positioned at a static
height of 100 feet, providing an overview of the parking
lot with a field of view spanning 180 degrees. Operating
with the Real-Time Streaming Protocol (RTSP), it is
set up to continuously stream video in real-time to a
designated server, where data is stored and analyzed. The
camera boasts a resolution of 1280x720 pixels, capturing
content at a rate of 60 frames per second (fps).

• GoPro Cameras: Two GoPro cameras are deployed to
capture diverse angles and perspectives of subjects within
the parking lot. These cameras are configured to record
video at a resolution of 1280x720 pixels and a frame rate
of 60 frames per second (fps). Each camera has a field of
view spanning 180 degrees. They are securely mounted
on stationary poles, with one positioned at a height of
100 feet and the other at a height of 80 feet.

b) Mobile Phones: Participants are directed to install a
publicly available data collection application, namely Sensor
Logger, on their smartphones. This application is designed to
capture accelerometer, sampling information at a rate of 100
Hz.



2) Data Collection: The experiment is carried out within a
controlled environment, simulating a city streetscape within
the parking lot. Data collection is synchronized across the
RTSP camera, GoPro cameras, and participants’ mobile
phones. The cameras record video footage, while the mobile
phones gather accelerometer data.

Participants are instructed to follow predefined paths and
execute various specific actions and walking patterns while
navigating the simulated city streetscape. These actions are
crafted to replicate common scenarios and behaviors encoun-
tered by pedestrians in urban environments. The following is
a list of actions and walking patterns participants were guided
to perform:

• Normal Walking: Participants were asked to walk at
their usual pace and follow a designated path within
the streetscape. This action captured baseline walking
behavior, including variations in walking speed, direction
changes, and interactions with other virtual pedestrians.

• Crosswalk Interaction: Participants encountered cross-
walks with traffic signals. They were instructed to obey
the signals and cross the street when the pedestrian
signal was green. This action allowed us to observe how
participants responded to traffic conditions.

• Smartphone Interaction: At specific points along the
path, participants received text messages on their smart-
phones. They were asked to read and respond to these
messages while walking. This action aimed to capture
how smartphone distractions affected gait and posture.

• Obstacle Avoidance: Participants encountered obstacles,
such as pedestrians walking in the opposite direction,
parked bicycles, or construction barriers. They were in-
structed to navigate around these obstacles while main-
taining their walking speed. This action assessed partici-
pants’ ability to adapt to changes in their path.

• Stop and Wait: Participants encountered virtual bus stops
and benches. They were asked to stop, wait, and pretend
to interact with their smartphones as if they were waiting
for transportation. This action simulated scenarios where
pedestrians pause during their journeys.

• Street Crossing: At designated street intersections, par-
ticipants were required to wait for the traffic signal to
change, cross the street when safe, and then continue
walking. This action observed how participants interacted
with vehicular traffic and other pedestrians at intersec-
tions.

• Sudden Distraction: Participants experienced unex-
pected distractions, such as a loud sound or a sudden
event (e.g., a vehicle honking). They were instructed to
react naturally to these distractions while walking. This
action assessed their ability to respond to unexpected
events while navigating the urban environment.

3) Data Synchronization: To guarantee data synchroniza-
tion, a visual cue, specifically a hand movement with the
mobile phone in hand, is employed at the commencement
of each recording session. This cue serves to align video

frames across the three channels and synchronize them with
timestamps in the sensor data during the post-processing
phase.

4) Experiment Duration: The data collection process lasted
for 1 hour, during which participants are recorded performing
various actions and walking patterns.

B. Feature Engineering

Inferences from the video data are used as input features
of the proposed pipeline. In order to infer features from the
visual data, the video stream has been pre-processed frame-
by-frame. Moreover, we slice out segments of the video where
even one of the individuals is absent (out of camera purview).
We ensure the start and end timestamp for data collected for
each individual is consistent, and each individual has an equal
distribution of feature time steps.

1) Perspective Transformation: The first step we adopted
in feature extraction from the video stream is transforming
the 2-dimensional camera view into a top-down bird’s eye
view. To do so we implement the concept of perspective
projection using a homography matrix [21]. We use the idea
of perspective transformation to project a bird’s eye view of
the parking lot used for data collection and then cast the
trajectories of our individual’s movements onto the top-down
map of the lot.

We segment the parking lot in the camera view into nine
(9) different regions and map each region to a static top-
down image of the same. This enhances the robustness and
preciseness of the transformed view. We implement the SIFT
algorithm with RANSAC to achieve the matching [22]. From
the bird’s eye view, each individual is a moving dot on the
screen with the color of the dot corresponding to the color of
the bounding box around them in the camera view.

This step provides five (5) distinct features: positions (x, y)
of the camera, coordinates (x, y) of the individual from bird’s
eye view, and the trajectory (θ) of their motion.

2) Pedestrian Detection and Tracking: The next step of our
feature engineering pipeline is detecting the individuals and
tracking their movements through the frames. This is made
relatively straightforward by the implementation of YOLOv8
[23] and OC-SORT [24] algorithms. OC-SORT is a tracking
algorithm, which if used in conjunction with the latest version
(v8) of the state-of-the-art object detection model, YOLO is
able to track each individual’s movements through the frames
as well as assign a unique track ID to each individual that
remains consistent throughout the video stream.

This step provides four (4) unique feature inferences from
the video stream: coordinates of the 2D bounding boxes
(x1, y1, x2, y2) around the individuals at every time step.

3) 3D Bounding Box Generation: We use the inferences
from the previous two steps to generate three dimensional
bounding boxes around the individuals. These bounding boxes
are based upon the two dimensional bounding boxes that
YOLO generates around detected objects. We obtain a total
of sixteen (16) features from the eight (8) vertices of the 3D
bounding boxes.



Left: Camera view. Right: Bird’s eye view

Fig. 1: 3D Bounding Boxes

In order to generate the 3D bounding boxes, we make use
of the trajectory (θ) of motion of each individual obtained
from the perspective transformation step as well as the 2D
bounding box coordinates obtained from YOLO. For each
tracked individual, we calculate the bird’s eye view bottom
coordinates, transform them to the camera view, and construct
a 3D bounding box around the individual. The LOWESS
(Locally Weighted Least Squares Regression Smoother) [25]
algorithm is used to fit a linear regression and obtain orienta-
tion of the bottom coordinates in bird’s eye.

C. System Description

The objective of this study is framed like a simple multivari-
ate time series forecasting problem. The 25 features inferred
from the collected video stream are concatenated into input
data. In addition, three (3) acceleration features (x, y, z) from
the sensor readings of the app are used as labels of the time
series. The goal of the pipeline is to predict the 3 acceleration
features given the 25 features inferred from the video stream
and map the input features to the correct person (track ID)
based on the predictions.

Total duration of video stream used throughout our ex-
periments is approximately 5 minutes (360 seconds) for less
computational complexity. For each person (track ID), we
segment batches of 6 seconds (180 frames) to train the model.
The training data is split into sequences of (92, 180, 25) for the
input and (92, 180, 3) for labels to mirror the format (samples,

time steps, features). The training is done following the leave-
one-out method. All the models are implemented with a Keras
backend.

Long-Short Term Memory (LSTM) Network: We imple-
ment four different variations of a Long-Short Term Memory
(LSTM) network as elaborated on below. We train and test
each variation in the same leave-one-out method: training on
three (3) track IDs and testing on the remaining (1) track ID.
All models are trained for 50 epochs with the efficient Adam
version of stochastic gradient descent and a batch size of 1,
without resetting the states for every epoch.

We report the train and test loss of the four (4) models for
each architecture for better insights.

a) Stacked LSTM: This set of LSTM models have been
defined with 2 hidden layers, each with 100 neurons and ReLU
activation. The output layer is dense and has 3 neurons for
predicting acceleration readings along three axes one time step
ahead. Mean squared error is used as the loss function. The
sequences are returned at every layer. This model essentially
does forecasting on the input time series.

TABLE I: Train and test loss of Stacked LSTM architecture

Model Test track ID Train Loss (%) Test Loss (%)
LSTM A 4 0.104 2.263
LSTM B 3 0.104 1.223
LSTM C 2 0.056 17.588
LSTM D 1 0.057 3.442

b) Sequence-to-Sequence LSTM model: We implement a
set of sequence-to-sequence models using the encoder-decoder
LSTM architecture. Each of the encoder and decoder has 1
hidden layer with 100 neurons and ReLU activation. There is
a repeat vector layer added between the encoder and decoder.
A 3-neuron dense layer is added to every temporal slice of
the output for predicting acceleration readings along three axes
one time step ahead. The sequences are returned at every layer.
Mean squared error is used as the loss function.

c) Sequence-to-Sequence LSTM with Attention: We add
an attention [26] layer to the previously built sequence-to-
sequence models. Both the encoder and decoder has two
LSTM layers. The first encoder LSTM layer has 128 units



Fig. 2: Basic Pipeline

Fig. 3: Long short-term memory network (LSTM) model.

TABLE II: Train and test loss of Sequence-to-Sequence LSTM
architecture

Model Test track ID Train Loss (%) Test Loss (%)
Seq2Seq A 4 0.099 2.363
Seq2Seq B 3 0.042 1.182
Seq2Seq C 2 0.059 17.868
Seq2Seq D 1 0.058 3.394

to process the input sequences and return sequences for each
time step. The second encoder LSTM layer with 64 units also
returns sequences for each time step. The attention mechanism
is applied to the encoder’s output sequences. We use the
Luong-style attention [27] a.k.a dot-product attention available
in Keras for this architecture. The attention layer is used to
calculate attention weights, and these weights are applied to
the encoder’s output sequences [28]. The first LSTM layer in
the decoder has 64 units and returns sequences for each time
step. It takes the attention-weighted encoder output sequences
as input. The second LSTM layer in the decoder has 128
units and also returns sequences for each time step. A Time
Distributed layer is applied to distribute a Dense layer to
each time step in the output sequence. The Dense layer has 3
units, indicating that the model is predicting sequences with a
dimensionality of 3 (x, y, z) at each time step. The LSTM
layers in both encoder and decoder have ReLU activation.
Mean squared error is used as the loss function.

d) Sequence-to-Sequence LSTM architecture with Atten-
tion and Contrastive Loss: We modify the loss function and
train the same previous set of sequence-to-sequence LSTM

Fig. 4: Structure of LSTM-attention-LSTM model.

TABLE III: Train and test loss of Sequence-to-Sequence
LSTM architecture with attention

Model Test track ID Train Loss (%) Test Loss (%)
Seq2Seq attn A 4 0.098 2.334
Seq2Seq attn B 3 0.044 1.183
Seq2Seq attn C 2 0.054 18.145
Seq2Seq attn D 1 0.057 3.523

models with attention. We use contrastive loss in conjunction
with mean squared error as the new function. Contrastive loss
was first introduced in [29] as a metric learning loss function.
The general formula for Contrastive Loss is:

L(W, (Y,X1, X2)
i) = (1− Y )LS(D

i
W ) + Y LDDi

W (1)

The Y term here specifies, whether the two given data points
(X1 and X2) are similar (Y=0) or dissimilar (Y=1). The LS

term stands for the loss function which should be applied
to the output if the given samples are similar, the LD term
is a loss function to apply when the given data points are
dissimilar. The DW term in parenthesis is the similarity (or,
rather, dissimilarity) between 2 transformed data points [30].

A version of contrastive learning widely used is dubbed
Self-supervised Learning. Self-supervised contrastive learning
(SSCL) has demonstrated exceptional efficacy across diverse



fields, such as computer vision (CV) [31], [32], [33] and
natural language processing (NLP) [34], [35]. This approach
leverages unlabeled data to generate both positive (similar)
and negative (non-similar) samples, facilitating the learning
of representations. There have also been recent studies inves-
tigating the effectiveness of SSCL for time-series forecasting.
These studies have found that integrating SSCL as an auxiliary
objective with Mean Squared Error (MSE) loss yields the best
results for time series forecasting tasks in LSTM-based models
[36].

Contrastive Loss: We define a custom contrastive loss
function to be used with the primary MSE loss pre-defined
in Keras. This custom auxiliary loss function computes the
pairwise cosine similarities between corresponding elements
in the sequences as a measure of how similar the predicted
sequence is to the true target sequence for each element. Con-
trastive loss is measured based on the cosine similarity. The
loss is computed as the negative log of the softmax function
applied to the scaled similarities. The softmax function is
used to obtain a probability-like distribution over the elements
in similarities. This contrastive loss encourages the model to
increase the similarity for positive pairs and decrease it for
negative pairs.

We pass this custom contrastive loss when compiling the
model along with MSE. By using this composite loss, the
model is simultaneously minimizing the MSE and the con-
trastive loss during training. The MSE loss is associated with
the primary task, while the contrastive loss serves as an
auxiliary task, helping the model learn a more meaningful
representation.

TABLE IV: Train and test loss of Sequence-to-Sequence
LSTM with attention and contrastive loss

Model Test track ID Train Loss (%) Test Loss (%)
Seq2Seq attn A 4 0.099 2.295
Seq2Seq attn B 3 0.043 1.161
Seq2Seq attn C 2 0.057 17.891
Seq2Seq attn D 1 0.057 3.478

V. EXPERIMENTS

To investigate the robustness and accuracy of the models,
we evaluate all the trained models for every LSTM architecture
with video inferences for all individuals. That is, we take the
25 features inferred from the video stream for every individual
and predict their accelerations for evaluating each model’s
performance. For evaluation of the models’ performance, we
compare the predictions with the ground truth IMU data using
Dynamic Time Warping (DTW) distance. The lower the DTW
cost between the predicted and ground truth time-series, the
more similar the two sequences are i.e. more like they are to
be for the same individual (track ID).

VI. RESULTS & PIPELINE PERFORMANCE

Our approach is to match a predicted time series to the
track ID whose ground truth time series it (prediction) has
lowest DTW distance with. To enhance the robustness of the

matching process, we expand our threshold/buffer to k lowest
DTW distances.

• The best performing Stacked LSTM model is LSTM D
with test loss of 3.44 and 75% correct matching for a
threshold of 3 lowest DTW distance values.

TABLE V: Average accuracy for user mapping to k lowest
DTW distances with leave-one-out training of Stacked LSTM
models

Model k = 1 k = 2 k = 3
LSTM A 0% 75% 75%
LSTM B 0% 50% 75%
LSTM C 0% 50% 75%
LSTM D 50% 75% 75%

• The best performing Sequence-to-Sequence (Seq2Seq)
LSTM model is Seq2Seq B with test loss of 1.18 and
100% correct matching for a threshold of 3 lowest DTW
distance values.

TABLE VI: Average accuracy for user mapping to k lowest
DTW distances with leave-one-out training of Seq2Seq LSTM
models

Model k = 1 k = 2 k = 3
Seq2Seq A 50% 50% 75%
Seq2Seq B 0% 25% 100%
Seq2Seq C 25% 50% 75%
Seq2Seq D 25% 50% 75%

• The best performing Sequence-to-sequence LSTM
model with attention is Seq2Seq attn A with test loss
of 2.33 and 100% correct matching for a threshold of 3
lowest DTW distance values.

TABLE VII: Average accuracy for user mapping to k lowest
DTW distances with leave-one-out training of Seq2Seq LSTM
models with Attention

Model k = 1 k = 2 k = 3
Seq2Seq attn A 50% 75% 100%
Seq2Seq attn B 25% 50% 75%
Seq2Seq attn C 25% 50% 75%
Seq2Seq attn D 25% 75% 100%

• The best performing Sequence-to-Sequence LSTM
model with attention and contrastive loss is
Seq2Seq attn CL D with test loss of 3.478 and
100% correct matching for a threshold of 3 lowest DTW
distance values.

TABLE VIII: Average accuracy for user mapping to k lowest
DTW distances with leave-one-out training of Seq2Seq LSTM
with attention and contrastive loss

Model k = 1 k = 2 k = 3
Seq2Seq attn CL A 0% 25% 25%
Seq2Seq attn CL B 25% 50% 75%
Seq2Seq attn CL C 25% 50% 75%
Seq2Seq attn CL D 0% 75% 100%



VII. LIMITATIONS & FUTURE WORK

The input and output data for our collected dataset is out-of-
distribution. That is to say, for every similar pair of data points
there are more dissimilar data points. This is what causes the
contrastive loss function to perform poorly. To combat this
drawback, we would need to augment our input dataset with
the same inferences but from different transformations of the
video stream. Moreover, we only use 5 minutes worth of data
in the training and evaluation of these models. Using the entire
1 hour of video stream would result in a more robust and
accurate pipeline.

Future work would also include continued introduction of
complexities to make the pipeline more robust, reliable, and
adaptable. We plan on streamlining the methodology such that
a single model can perform video inferences and person-device
ReID in one shot in real time.

VIII. CONCLUSION

This paper proposes a robust methodology connecting IMU
data with individuals in videos, with a focus on overcoming
challenges inherent in cross-modal recognition and tracking.
We investigate several different variations of an LSTM-based
architecture with progressively introduced complexities. The
overall best performing variation is a Sequence-to-Sequence
LSTM with an Attention mechanism. The designed pipeline
successfully maps individuals within a video stream to their
corresponding IMU data, given some threshold for error,
showcasing increased resilience to variations in appearance
and other factors. In summary, this paper not only contributes
to advancing person-mobile device ReID but also provides a
solid foundation for future research in the dynamic field of
cross-modal inference, emphasizing the importance of inte-
grating multiple data modalities for more resilient and accurate
recognition and tracking of individuals in diverse settings.
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