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Abstract—This paper investigates whether integrating causal
knowledge into Large Language Models (LLMs) enhances their
ability to generate hypotheses and design effective interventions
in smart environments. Specifically, we compare a causal agent,
equipped with Directed Acyclic Graphs (DAGs) and counterfac-
tual reasoning, against a baseline agent without explicit causal
knowledge. Using a smart room simulation, we evaluate their
performance across metrics such as relevance, novelty, alignment,
and efficiency. Our results demonstrate that incorporating causal
reasoning improves the accuracy and robustness of LLMs in
optimizing energy efficiency and user satisfaction, highlighting
the potential of causal-aware AI systems for complex decision-
making environments.

I. INTRODUCTION

Smart environments, such as homes and offices, rely on dy-
namically managing variables like temperature, humidity, and
air quality to optimize energy efficiency and user satisfaction.
Traditional control systems often struggle to balance these
factors, especially in scenarios with complex and dynamic
causal relationships.

Large Language Models (LLMs) have shown promise in
adaptive reasoning tasks, including hypothesis generation and
decision-making. However, their ability to effectively navigate
complex systems remains limited without explicit access to
causal knowledge. This research investigates whether equip-
ping LLMs with causal reasoning, represented through Di-
rected Acyclic Graphs (DAGs) and counterfactual analysis,
enhances their performance in hypothesis generation and in-
tervention design for smart environments.

We compare two agents: a Causal Agent with access to
causal relationships and reasoning capabilities, and a Baseline
Agent that relies only on pattern-based inference. The agents
are evaluated in a simulated smart room environment on met-
rics such as relevance, novelty, and alignment of hypotheses
and interventions. This work contributes to the growing field
of causal-aware AI by exploring the integration of causal
inference with LLMs in practical applications.

II. PROBLEM STATEMENT

Managing dynamic variables such as temperature (T ), hu-
midity (H), and air quality (AQ) in smart environments is
critical to achieving two primary outcomes:

• Energy Efficiency (E): Minimizing energy consumption.
• User Satisfaction (S): Maximizing user comfort.

Traditional control systems struggle with balancing these
factors, particularly in dynamic settings with interdependent
causal relationships. For example, reducing energy consump-
tion may inadvertently lower user satisfaction by causing
discomfort, while improving air quality may increase energy
costs.

This research addresses whether providing causal knowl-
edge to LLMs can improve:

1) Hypothesis generation for identifying key causal rela-
tionships.

2) Intervention design for optimizing outcomes while ad-
hering to system constraints.

Two LLM-based agents are evaluated:
• Causal Agent (AC): Equipped with Directed Acyclic

Graphs (DAGs) and counterfactual reasoning.
• Baseline Agent (AB): Relies on heuristic-based, pattern-

matching approaches without explicit causal information.

III. MATHEMATICAL FRAMEWORK

A. Key Components

• State Variables (X): Environmental conditions in the
smart room:

X = {T,H,AQ},

where T , H , and AQ represent temperature, humidity,
and air quality, respectively.

• Control Variables (I): Interventions to modify the envi-
ronment:

I = {IT , IH , IAQ}.

• Outcome Variables: Metrics of interest:
– Energy Consumption (E(X))
– User Satisfaction (S(X))

• Causal Relationships (G): A Directed Acyclic Graph
(DAG) represents dependencies:

X → {E,S}.

• Constraints: The environmental variables are bounded
by:

T ∈ [18, 30]◦C, H ∈ [30, 70]%, AQ ∈ [0, 500].



B. Reward Function

The reward for an intervention is a weighted sum of user
satisfaction (S) and energy efficiency (E):

R(I) = αS(X)− βE(X),

where α > 0 and β > 0 are weights prioritizing satisfaction
and efficiency, respectively.

C. Risk Function

Risk corresponds to deviations from ideal operating condi-
tions:

Risk(I) =
∑
i

λi ·
(
Xi −X ideal

i

)2
,

where λi > 0 penalizes deviations from ideal values X ideal
i .

D. Optimization Problem

The objective is to maximize reward while minimizing risk:

max
I

E[R(I)]− γ · Risk(I),

where γ > 0 balances the trade-off between reward and risk.

E. Causal Agent vs. Baseline Agent

• Causal Agent (AC): Utilizes the DAG (G) to estimate:

E[S(X)] and E[E(X)],

incorporating counterfactual reasoning to refine interven-
tions.

• Baseline Agent (AB): Relies on heuristic-based predic-
tions without access to explicit causal information.

IV. RELATED WORK

A. Integration of Causal Inference and Large Language Mod-
els

Recent research has explored the intersection of causal infer-
ence and LLMs, aiming to enhance the reasoning capabilities
of AI systems. For example:

1) LLM-Guided Causal Discovery: Vashishtha et al. [1]
demonstrated how LLMs can estimate causal effects
using virtual expert methods for causal ordering of
variables.

2) Causal Inference Benchmarking: Jin et al. [2] in-
troduced CLadder, a benchmark for assessing causal
reasoning in LLMs across associational, interventional,
and counterfactual tasks.

B. Causal Reasoning Capabilities of LLMs

Other works focus on improving the causal reasoning ca-
pacity of LLMs:

1) Xu et al. [3] surveyed the integration of causal inference
with LLMs, emphasizing multimodal reasoning and fair-
ness.

2) Ma [4] evaluated LLMs on diverse causal tasks, includ-
ing pairwise discovery and counterfactual reasoning.

3) Kıcıman et al. [5] explored LLMs’ capabilities in gen-
erating correct causal arguments with high probability.

C. Applications in Complex Environments

The integration of causal reasoning in LLMs is partic-
ularly promising for applications like smart environments.
Xu et al. [3] highlighted the relevance of multimodal data
sources, while other works propose combining statistical and
knowledge-based causal inference techniques [6], [7].

V. METHODOLOGY

A. Problem Formulation

This study addresses two primary outcomes in a smart room
environment:

• Energy Efficiency (E): Minimize energy consumption.
• User Satisfaction (S): Maximize user comfort.

Key influencing variables include temperature (T ), humidity
(H), and air quality (AQ).

B. Agents

• Causal Agent (AC): Leverages DAGs and counterfac-
tual reasoning for hypothesis generation and intervention
design.

• Baseline Agent (AB): Relies on pattern recognition
without access to causal information.

C. Simulation Environment

A Node.js-based simulator replicates dynamic environmen-
tal conditions. Key features include:

• Real-time updates with millisecond precision.
• Variable bounds: T ∈ [18, 30]◦C, H ∈ [30%, 70%],

AQ ∈ [0, 500].
• Immediate feedback on interventions.

D. Workflow

1) Agents generate hypotheses (H) about causal relation-
ships.

2) Propose interventions (I) to modify environmental vari-
ables.

3) Evaluate outcomes based on predefined metrics.

VI. EVALUATION METRICS

A. Hypothesis Evaluation Metrics

• Relevance Score: Measures alignment with ground truth
DAGs.

• Novelty Score: Quantifies unique insights introduced in
hypotheses.

• Breadth Score: Evaluates the comprehensiveness of cov-
ered causal paths.

B. Intervention Evaluation Metrics

• Impact Accuracy: Assesses the alignment between pre-
dicted and observed outcomes.

• Efficiency Score: Measures proximity to ideal values for
key metrics.

• Alignment Score: Combines coordination, moderation,
and efficiency metrics into a single score.



VII. RESULTS AND DISCUSSION

The causal agent (AC) consistently outperformed the base-
line agent (AB) across all metrics:

• Relevance and Breadth: AC achieved 25% higher rele-
vance scores and demonstrated broader causal reasoning.

• Impact Accuracy: AC’s intervention predictions were
30% more accurate.

• Novelty: AC introduced 40% more novel elements in its
hypotheses.

A. Analysis

The superior performance of AC highlights the value of
incorporating causal knowledge into LLMs. The ability to
reason about both direct and indirect relationships enabled
more precise and impactful interventions.

VIII. CONCLUSION AND FUTURE WORK

This work demonstrates the efficacy of causal reasoning in
enhancing LLMs’ ability to generate hypotheses and interven-
tions for dynamic environments. Future work will explore:

• Integration with multimodal data (e.g., visual and sensory
inputs).

• Real-time adaptive learning for evolving environments.

REFERENCES

[1] S. Vashishtha, S. Yadlowsky, and S. Athey, “Estimating causal ef-
fects with large language models as virtual experts,” arXiv preprint
arXiv:2310.09851, 2023.

[2] Z. Jin, K. Singhal, T. Fog, N. Garg, L. Xiao, S. Subramanian, D. Sontag,
A. Tamkin, B. Schölkopf, B. Barak et al., “Cladder: Assessing causal
reasoning in language models,” arXiv preprint arXiv:2312.04350, 2023.

[3] H. Xu et al., “A survey on large language models and causal inference:
Towards causal ai,” arXiv preprint arXiv:2401.03721, 2024.

[4] Y. Ma, “Large language models for causal inference,” arXiv preprint
arXiv:2402.07962, 2024.

[5] E. Kıcıman, R. Ness, A. Sharma, and C. Tan, “Causal reasoning and large
language models: Opening a new frontier for causality,” arXiv preprint
arXiv:2305.00050, 2023.

[6] J. Takayama and S. Shimizu, “Statistical causal prompting: Integrating
statistical causal discovery with knowledge-based causal inference using
large language models,” arXiv preprint arXiv:2402.01173, 2024.

[7] Y. Zhang, Y. Zhu, Y. Zhu, X. Wang, Y. Guo, S. Gao, and H. Xu, “Utilizing
llms for enhanced argumentation and extraction of causal knowledge in
disease mechanism studies,” medRxiv, 2024.


	Introduction
	Problem Statement
	Mathematical Framework
	Key Components
	Reward Function
	Risk Function
	Optimization Problem
	Causal Agent vs. Baseline Agent

	Related Work
	Integration of Causal Inference and Large Language Models
	Causal Reasoning Capabilities of LLMs
	Applications in Complex Environments

	Methodology
	Problem Formulation
	Agents
	Simulation Environment
	Workflow

	Evaluation Metrics
	Hypothesis Evaluation Metrics
	Intervention Evaluation Metrics

	Results and Discussion
	Analysis

	Conclusion and Future Work
	References

